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SUMMARY

A simple, efficient, flexible and accurate interpolation method, CIVA, is introduced for use with
mesh-free methods for flow simulations. The method enables mesh-free cubic interpolation with the local
co-ordinate system, such as volume and area co-ordinates, by utilizing the concept of the CIP scheme and
allows the development of new highly accurate mesh-free methods. The mesh-free methods integrate the
gridless, particle and CIP methods since they have flexibility in the treatment of moving calculation
points. For achieving high accuracy with the CIVA method, it is also important to correctly evaluate
particle movement. The improvement of the evaluating algorithm is another objective of this study. The
validity of the algorithms is confirmed by applying them to the convection and convection–diffusion
problems. Since the CIVA-based mesh-free methods enable flexible, efficient and accurate fluid simula-
tion, they make it possible to perform highly accurate simulations of many kinds of problems that involve
complicated geometries and phenomena. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Although the finite difference method (FDM) and finite element method (FEM) are the most
popular mesh-using methods in the field of flow simulations, they are of limited applicability
to problems involving complex geometries or complex phenomena because the results obtained
by the methods depend strongly on the mesh characteristics. Thus, generating a good mesh
requires a lot of time and great care. Consequently, mesh-free methods, which do not require
the construction a mesh, have been attracting the attention of fluid dynamics researchers. We
can classify the mesh-free methods into two groups, The gridless (Eulerian) method and the
particle (Lagrangian) method. Adopting broad definitions, by ‘gridless method’ we mean
mesh-free flow simulation with fixed calculation points and by ‘particle method’ we mean
mesh-free flow simulation using calculation points that move according to the flow. The
concept of the gridless method utilizing least-squares approximation, which was developed for
treating complex geometries, was originally proposed by Batina [1] and was subsequently
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improved by Satofuka et al. [2] and others. On the other hand, some particle methods for
moving boundary problems have been developed by Harlow [3], Chorin [4], Monaghan [5] and
Koshizuka and Oka [6]. Both the gridless method and the particle method have flexibility with
respect to the calculation points, and are therefore useful for fluid problems that involve
complicated geometries and complicated phenomena. Conversely, they have the drawbacks
that improvement of numerical accuracy and application to high Reynolds number flow are
difficult.

In the conventional gridless method, the scalar quantity around a certain point is approxi-
mated as a function, and the spatial derivatives in the governing equation are evaluated by the
least-squares method. The gridless method thus causes numerical errors (numerical viscosity) in
the function approximation of the least-squares method. Therefore, the increase in the number
of points and the usage of high-order functions do not necessarily lead to an improvement of
accuracy. In addition, since the gridless method is essentially a central difference scheme, there
is also a problem with stability.

In the particle method, although the convection term is expressed by movement of
calculation points (particles), data interpolation is required when particles need to be rear-
ranged in order to cancel the heterogeneity of the particle distribution. Generally, linear
(first-order) interpolation is used, but this low-order interpolation leads to generation of
numerical viscosity in the same manner as in the case of the gridless method. Thus, in the
conventional mesh-free technique, a major problem is the numerical viscosity produced by the
function approximation or the interpolation. This problem arises because there is no suitable
and highly accurate interpolation algorithm applicable to mesh-free methods.

Recently, the cubic interpolation pseudo-particle (CIP) method [7,8] has also attracted the
attention of researchers. With this method it is possible to improve accuracy and stabilize the
solution with the third-order interpolation using the spatial derivatives as variables. Since the
CIP method is originally a rectangle or rectangular parallelepiped mesh-based method, it is
difficult to apply it to mesh-free methods. First of all, as shown in Appendix A, the CIP
method is a third-order scheme in terms of space accuracy, and uses a rectangular mesh. This
method is less advantageous than other third-order difference schemes, such as the UTOPIA
and K–K method because it requires a great deal of memory and has a high computing cost.
However, if the concept of the CIP method could be made applicable to the mesh-free
methods, it would be extremely useful and powerful.

An objective of this study is to develop a highly accurate (CIP-type) interpolation algorithm
applicable to the mesh-free method. One of the methods of developing the algorithm is based
on a triangular unit in two dimensions and a tetrahedral unit in three dimensions. In this case,
we only locally compose a suitable triangle or tetrahedron (local mesh), including the target
point for interpolation from calculation points when interpolation is required. However,
interpolation in the local triangle using a cubic spline function becomes a problem because the
amount of known information is less than that required to solve the undetermined coefficients
of the complete cubic function. To solve the problem, Aoki has presented a method using the
mixed second partial derivative ((2f/(x (y) as a variable [8], but the application to flow
simulations raises the problems of how to calculate the variable and how to set the boundary
conditions. Instead of this method, the author adopts another approach that involves reducing
the number of terms of the complete cubic function without losing symmetry and without
solving the linear system to determine the coefficients. The new interpolation method, which is
called cubic interpolation with volume/area co-ordinates (CIVA), makes it possible to achieve
highly accurate mesh-free interpolation. The method applied to two-dimensional problems was
initially called cubic interpolation with area co-ordinates in a triangular unit (CAT) [9,10].
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Firstly, the method and how to apply it to mesh-free methods, such as the gridless method and
the particle method, are described. In the particle method, the convection terms are treated by
the Lagrangian, rearrangement and interpolation (LRI) algorithm. Because the LRI algorithm
with low-order interpolation yields large errors, it is necessary to combine it with a high-order
mesh-free interpolation method, such as the CIVA method. As the CIVA–particle method,
which combines the particle method with the CIVA method, is very flexible and independent
of particle movement or rearrangement, it can integrate the gridless method, the particle
method and the CIP method [10]. To confirm the validity, two examples are considered; a pure
convection problem and a convection–diffusion problem.

In the mesh-free method using the CIVA method, since not only the physical quantity of a
particle but also its spatial derivatives are transferred, it is necessary to move particles with
sufficient accuracy. Therefore, improvement of time integration of particle movement are also
performed here.

2. THE CIVA ALGORITHM

In the conventional mesh-free method, the numerical viscosity produced by the interpolation
(or function approximation) becomes a serious problem because there is no highly accurate
interpolation algorithm applicable to mesh-free techniques. The author therefore proposes a
highly accurate interpolation method for mesh-free techniques. In mesh-free methods, interpo-
lation of value at a target point is performed using the data of points around the position. Use
of the least-squares method causes numerical error in the approximation of functions.
Therefore, the increase of points and the use of higher-order functions do not necessarily lead
to improvement of accuracy. That is, interpolation should generally be performed using as few
points as possible. Such points form a triangle in two dimensions and a tetrahedron in three
dimensions, and these forms are suitable from the viewpoint of flexibility. However, the
conventional method for a triangle uses linear interpolation and causes large errors. Mesh-free
interpolation is therefore performed with the third-order function using the concept of the CIP
method in which scalar quantities and their spatial derivatives are taken as variables.

2.1. Formulation

Let the co-ordinate system in Cartesian co-ordinates be defined as x= (x, y) for two
dimensions and x= (x, y, z) for three dimensions. In the two-dimensional case, the complete
cubic function is defined as

f(x, y)=a1+a2x+a3x2+a4x3+a5y+a6y2+a7y3+a8xy+a9x2y+a10xy2. (1)

When the cubic function is used to interpolate within a triangle in the same way as in the case
of the CIP method, there are only nine known pieces of information for ten unknown
coefficients of Equation (1). Thus, the available information is insufficient. Aoki proposed a
method that compensates for the shortage of information by using mixed second partial
derivatives (2f/(x (y as variables [8]. However, when the method is applied to actual fluid
simulations, the procedures for calculating the derivatives and setting up the boundary
condition become a problem. Therefore, the problem will be solved by reducing the unknown
coefficients. If the unknown coefficients of Equation (1) are reduced in Cartesian co-ordinates,
the following problems generally arise.

(a) The symmetric property of the function collapses.
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Figure 1. Two-dimensional CIVA using triangles and the upwind scheme.

(b) Simultaneous linear equations of coefficients have to be solved. This requires a large
amount of calculation time.

(c) The equations become singular if the triangle takes a certain form.

These problems can be solved by using the local or natural co-ordinate system, such as area
co-ordinates and volume co-ordinates, which are commonly used in the FEM field. For
simplicity, the co-ordinates shown in Figure 1 are adopted and the partial differential of f with
respect to x is expressed as f x.

The area co-ordinates in two dimensions are the normalized system for triangles, and a point
P within a triangle is expressed by three co-ordinate values (L1, L2, L3). These co-ordinate
values indicate the ratio of the area of the partial triangle shown in Figure 2 to the whole and
are given by the following equation:
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Here, to maintain symmetry, the cubic function corresponding to the scalar quantity in a
triangle is set in the following form using the area co-ordinates:

f0 (L1, L2, L3)= %
3

i=1

aiLi+d %
3

j,k=1
j"k

bjk [Lj
2Lk+cL1L2L3]. (4)

Figure 2. Area co-ordinates.
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Figure 3. 3D CIVA using tetrahedrons.

This function is developed from the non-conforming shape function for plate bending analysis
with the FEM [11,12]. The parameter d is the regulation parameter from the first-order to the
third-order interpolation, and serves as the third-order interpolation in the case of d=1 and
the first-order interpolation in the case of d=0. The setting up of c is an interesting problem
and a subject for future investigation. The use of another calculation point and the application
of the least-square approximation are among the candidate approaches to accomplish this.
Here, c=1/2. This is the same value as is conventionally used in the FEM plate bending
analysis. This value is chosen so that the cubic function expressed by Equation (4) may give
arbitrary curvatures in all the areas within a triangle (constant curvature conditions) [12].
Another reason why the value of c must be given in advance is that the term L1L2L3 and the
first-order spatial differential values become zero at every vertex of a triangle; therefore, the
coefficients for L1L2L3 cannot be determined from the known information of the vertexes. On
the other hand, the rest of the unknown nine coefficients of Equation (4) can be determined
independently of c and directly without solving simultaneous linear equations.

The partial differential operators with the area co-ordinates become
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where

J= (x2−x1)(y3−y1)− (y2−y1)(x3−x1). (6)

Using these relations, the unknown coefficients of Equation (4) can be determined to be

ai= fi, bjk= fj− fx+ (xk−xj)f j
x+ (yk−yj)f j

y. (7)

Therefore, by substituting the co-ordinates of arbitrary points in a triangle expressed with the
area co-ordinates in Equation (4), the third-order interpolation of the scalar quantity of the
point can be calculated. The derivatives can be calculated similarly by using Equation (5).

In the case of three dimensions, the CIVA method utilizes a tetrahedron for interpolation,
and the volume co-ordinate is the normalized system for tetrahedrons (Figure 3). A point
within a tetrahedron is expressed by the four co-ordinate values (L1, L2, L3, L4), whose
co-ordinate values indicate the ratio of the volume of the partial tetrahedron to the whole.
With the volume co-ordinates, the following three-dimensional cubic function in a tetrahedron
can be assumed as an example.
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f0 (L1, L2, L3, L4)= %
4

i=1

aiLi+d %
4

j,k=1
j"k

bjk [Lj
2Lk+c(L1L2L3+L2L3L4+L1L2L4+L1L3L4)].

(8)

Without solving the linear system, the coefficients a and b can be calculated independently of
c as follows:

ai= fi, bjk= fj− fk+ (xk−xj)f j
x+ (yk−yj)f j

y+ (zx−zj)f j
z. (9)

The parameters c and d have the same meanings as in the two-dimensional case. You must
specify c in advance because the terms L1L2L3, L2L3L4, L1L2L4, L1L3L4 and the first-order
spatial differential values become zero at every vertex of the tetrahedron and the their
coefficients cannot be determined from the known information at the vertexes.

From the above discussion, it can be confirmed that the volume/area co-ordinates make it
possible to solve the problems (a)–(c) and enable the cubic interpolation of the scalar
distribution in a triangle or tetrahedron using a simple formulation.

2.2. Application to the gridless method

It is generally important in flow simulations to accurately evaluate convection effects,
because the convection terms govern accuracy of the whole calculation, especially in turbulent
flow. Therefore, the initial value problem of the following two-dimensional pure convection
equation is considered.

(f
(t

+u ·9f=0, (10)

where u means flow velocity, u= (u, 6). The calculation points should be allotted suitably in
the calculation area. The conventional gridless method solves Equation (10) by calculating the
derivatives of a point by the least-squares method from the values of the surrounding points
[1,2]. Therefore, the method causes numerical errors related to the function approximation of
the least-squares method. Also, the increase in the number of points and the use of high-order
functions do not necessarily lead to improvement of accuracy, and there is a problem with
stability because the method is basically of the central difference type.

The author applies the Godunov-type upwind scheme combined with the CIVA method to
estimate the convection term. The governing equations for the spatial derivatives are the same
as in the CIP method and are as follows,

(f x

(t
+ux ·9f x= −ux ·9f,

(f y

(t
+ux ·9f y= −uy ·9f. (11)

With the same time-splitting technique as the CIP method, these equations are evaluated in the
two steps of the advection phase,

(f x

(t
+u ·9f x=0,

(f y

(t
+uy ·9f y=0, (12)

and the non-advection phase

(f x

(t
= −ux ·9f,

(f y

(t
= −uy ·9f. (13)
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Figure 4. Pure convection problem considered for validation of the methods (initial condition of f ).

In the upwind schemes, the solution of Equation (10) in the point P1 in Figure 1 is
approximated with the value of point Q on the upwind side by a time step, and the value is
calculated by interpolation. The solution of Equation (10) is approximated as

f(x, t+Dt): f(x−Dtu, t). (14)

A feature of the CIP method is that the upwind scheme is used not only for convection of the
scalar quantity (Equation (10)) but also for its derivatives (Equation (12)), i.e. the advection of
the spatial derivatives is also evaluated by the upwind scheme.

f x(x, t+Dt): f x(x−Dtu, t), f y(x, t+Dt): f y(x−Dtu, t). (15)

The gridless method based on the CIVA method employs the same technique and calculates
the scalar value and its derivative at point Q by interpolation using the cubic spline function
from local triangle P1P2P3 on the upstream side. Of course, choosing an inappropriately
shaped triangle, such as one whose vertexes lie almost in a straight line, should be avoided
because the coefficient matrix of Equation (3) becomes singular (J�0) in this case. The
derivatives can be calculated similarly by a relation such as Equation (5). The author refers to
the method in which the CIVA method and the gridless method are combined as the
CIVA–gridless method. He evaluates the non-advection terms of Equation (13) by the Euler
time marching scheme using the information in the triangle on the upstream side.

Consider the pure convection problem of a rotation field having a constant angular velocity
of p/5 (rad s−1) around the system center (0, 0). The initial distribution of the scalar value is
given in Figure 4. The distribution of f after one rotation (2p) is compared. Figure 5 is the

Figure 5. Exact solution.
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Figure 6. Donor cell, Dt=2×10−3 (second-order central difference plus 10% artificial viscosity).

Figure 7. Third-order upwind (UTOPIA), Dt=2×10−3.

Figure 8. CIP, Dt=2×10−2.

exact solution, and Figures 6–8 are the results with the finite difference method using uniform
grid points. These results show that the CIP scheme has almost the same accuracy as the
third-order upwind difference scheme in space when the grid points are the same. The reason
why the CIP method has third-order accuracy in space is explained mathematically in
Appendix A. In analyses using a rectangular mesh, the CIP method is considered to have many
disadvantages, such as the increase of required memory and the amount of computation. In
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other words, the CIP-type technique is considered to be particularly effective when applied to
mesh-free methods, whose accuracy is otherwise difficult to improve. This is one of the reasons
why the CIP-type interpolation is used for the mesh-free methods. The result obtained by the
CIVA–gridless method is shown in Figure 9. The result shows that the method gives the same
accuracy as the third-order upwind scheme or the CIP method when the calculation point is
the same.

2.3. Application to the particle method

In the particle method the calculation points (particles) move with the flow. Since the
convection term is estimated from the movement of the calculation points, the numerical
viscosity is thought to be small (except for the time integration accuracy mentioned in Section
3). However, a compensation or rearrangement procedure of calculation points is generally
required for the purpose of canceling the heterogeneity of particle number density [6]. In the
procedure, interpolation of the physical quantity is needed. Application of a low-order
interpolation, such as linear interpolation, creates significant numerical viscosity. The above
mentioned CIVA method is effective in solving the problem because of the low numerical
viscosity and high accuracy. The method in which the CIVA method and the particle method
are combined is called the CIVA–particle method. This method is composed of three (LRI)
steps. The first step consists of the movement of particles (Lagrangian step). The second step
involves the particle rearrangement (rearrangement step) and the third is interpolation of the
physical quantities (interpolation step). In the first step, particles move according to the fluid
behavior with the scalar quantity and the spatial derivatives (Figure 11). This particle
movement is also considered to be the movement of the cubic spline function according to the
flow (Figure 12). The second and third steps are performed only when rearrangement is
required. When particles move according to the fluid behavior, they gather or scatter at certain
points. Therefore, it is necessary to compensate or rearrange particles in order to control the
particle density. A simple algorithm restores the particle position at every time step. The
algorithm is efficient because it allows searching of the surrounding particles at one time, but
is not able to treat moving boundaries. Another use of particle rearrangement is to keep the
particle number density constant [6]. After the particle rearrangement step, interpolation of the
physical quantities at the new particle position is required. In the step of the CIVA–particle
method, physical quantities are cubic interpolated by the CIVA method.

Figure 9. CIVA–gridless, Dt=2×10−2.
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Figure 10. CIVA–PU, Dt=2×10−2.

The concept of the LRI algorithm is flexible and has the following important merit. While
the rearranged particle position in the gridless method is fixed to the original position and that
in the particle method depends on both the original position and the flow direction, the
particle position in the LRI algorithm is independent of the original position and the flow
direction. In other words, the LRI algorithm is a gridless method when particles go back to
each original position at every time step and is a particle method when no rearrangement is
performed. Therefore, the CIVA–particle method, which combines the CIVA method, the
particle method and the LRI algorithm, is able to integrate the gridless method, the particle
method and the CIP method.

The author checked the validity of the CIVA–particle method by applying it to an example
in which the particle position is restored at every time step. As the method requires
interpolation at every time step, the effects are clearly observed. Calculation points move
according to the flow with the scalar quantity and the spatial derivative quantities and then
return to the original positions. The quantities in the original position are computed by the
CIVA method from the values of the moved calculation points (Figure 11). In the algorithm,
the scalar distribution in the local triangle, P1% , P2% , P3% , shown in Figure 11, is expressed with
the cubic spline function and the scalar quantity and the derivatives at point P, are calculated.
The CIVA–particle method that restores the particle position at every time step is called the
CIVA–particle upwind (CIVA–PU) method. With the CIVA–PU method, a calculation point
can be treated as a fixed point from the viewpoint of computation in the same manner as in
the CIVA–gridless method. However, the algorithm of the CIVA–PU method is superior to
that of the CIVA–gridless method because it

Figure 11. CIVA–particle method.
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Figure 12. Explanation of CIVA–particle method using the concept of moving cubic spline.

(a) takes flow non-uniformity into consideration and
(b) accurately evaluates the target point position for interpolation.

The above mentioned CIVA–PU method was applied to the problem described in Section 2.3
with uniform calculation points. The result is shown in Figure 10. The solution with the
CIVA–PU method is as accurate as those obtained by the third-order upwind (UTOPIA)
scheme and the CIP scheme with finite difference discretization. Moreover, the CIVA–PU
method achieved stable calculations at a time step size ten times greater than that employed in
the case of UTOPIA.

Next, more quantitative comparisons are performed. For the same problem as above, the
irregular points (104 pieces) in Figure 13 are used. The result is shown in Figure 14. For
comparison, the results obtained by the Donor cell (second-order central difference plus 10%
artificial viscosity) and UTOPIA (third-order upwind scheme) methods using a uniform
100×100 mesh are included. Despite the random calculation points, the obtained solution has
the same accuracy as the solution obtained by UTOPIA with a uniform mesh.

The final example in this section is an interesting case that highlights the merit of the
CIVA–particle method, i.e. the rearranged particle position is independent of the original
position and is also free from the flow. Computation is done on calculation points that
fluctuate at every time step as shown in Figure 15. The fluctuation range is 940%× (random
number [0, 1])× (original particle interval) around the original position. The result based on
the particles is shown in Figure 16. In spite of this severe condition, the CIVA–particle method

Figure 13. Some of the calculation points.
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Figure 14. Comparison of scalar profiles after 2p rotation.

can give a fairly good solution. In this calculation, the deformation of the triangles used for the
interpolation is also checked and Figure 17 shows one of the most deformed triangles. From
the figure, the CIVA–particle method is found to be fairly robust with respect to the triangle
shape.

3. IMPROVEMENT OF THE TIME MARCHING METHOD FOR PARTICLE
MOVEMENT

In the particle method, convection terms are expressed by movement of calculation points
(particles); therefore, accurate estimation of particle movement is required. The estimation is
especially important in the case of the CIVA method because the derivatives also move with
the particles. Since the accuracy of the conventional time marching or time integral schemes
for the particle method is not satisfactory, the whole solution does not reach the required
accuracy, even if the spatial accuracy is improved. Here, a time marching scheme is introduced
to improve the accuracy of position evaluation (particle movement) in the particle method.
Then, by explaining the upwind scheme in terms of movement of virtual particles, the time

Figure 15. Randomly fluctuating calculation points.
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Figure 16. The result in the case of randomly fluctuating calculation points (Dt=0.005).

marching method is applied to the conventional mesh-based upwind scheme including the CIP
method.

3.1. Particle method and CNP method

The governing equation for particle movement is

dx
dt

=u. (16)

In the conventional particle method, the explicit evaluation (Equation (17)) and the implicit
evaluation (Equation (18)) of Equation (16) are used.

x i
n+1$x i

n+Dtu i
n. (17)

x i
n+1$x i

n+Dtu i
n+1. (18)

However, since both the evaluation techniques have first-order accuracy in time, a large time
step size in the case of a non-uniform flow will induce errors related to particle movement (see
Figure 18). In order to solve this problem, the Crank–Nicolson-type particle movement
evaluation method (CNP) is used,

Figure 17. The most deformed triangle used for the interpolation.
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Figure 18. Comparison of particle movement evaluation schemes in the rotational field.

x i
n+1$x i

n+Dt
u i

n+u i
n+1

2
. (19)

In addition to the CNP method, other higher-order time marching schemes, such as the
Adams–Bashforth and Runge–Kutta methods, can also be used. For example, the second-or-
der Adams–Bashforth scheme is given by

x i
n+1$x i

n+
Dt
2

(3u i
n+u i

n−1). (20)

Here, the validity of above mentioned method is checked with the IAHR benchmark
convection–diffusion problem [13]. The details are shown in Figure 19. The governing
equation of this problem is

(f
(t

+u ·9f=
1

Pe
92f

(D)

, (21)

where Pe is the Peclet number. In order to use the CIVA-based method for solving Equation
(21), the following equations are used as the governing equations for the spatial derivatives f x

and f y:

(f x

(t
+u ·9f x= −ux ·Df+

1
Pe

92f x

(D)

,
(f y

(t
+u ·9f y= −uy ·Df+

1
Pe

92f y

(D)

. (22)

The part underlined (D) in Equation (21) represents the diffusion of the scalar quantity, while
the parts underlined (D) in Equation (22) represent the diffusion effect of the derivatives. The
other terms are the same as those of the problem in Section 2.4 and can be estimated by the
same procedure as described in Section 2.4. To evaluate the diffusion terms (D) of the scalar
quantity and the derivatives, the Laplacian model introduced by Koshizuka [6] is extended and
a model that distributes not only the scalar quantity but also the derivatives is developed (see
Figure 20).

Figure 19. IAHR benchmark problem [13].
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Figure 20. Diffusion model.

The scalar distribution at the outlet is compared in Figure 21, which includes the benchmark
solution [14], the solution with the first-order interpolation and the solutions obtained by the
explicit method and the implicit method combined with the CIVA method. Although there is
little difference between the results for the first-order interpolation and the CIVA method at
low Pe, the numerical viscosity for the CIVA method is smaller than those for the others at
high Pe number. As predicted from Figure 18, the distribution obtained by the explicit method
shifts away from the rotation center and that obtained by the implicit method shifts towards
the rotation center. The CNP method is found to be the most accurate of the time marching
methods for particle movement.

3.2. Application to the Goduno6-type upwind scheme (including the CIP method)

The CNP method for particle movement is also applicable to the mesh-based upwind scheme
including the CIP method. The evaluation of the convection term in the Godunov upwind
scheme is described more correctly than in Equation (14) as

f(xi, t+Dt): f(xi−Dtu i
n, t). (14%)

The upwind scheme of Equation (14%) can also be explained as the downward movement of
virtual (pseudo) particles according to the flow, which is shown in Figure 22. The differences
between the CIP method and the CIVA–particle method are the same points of (A) and (B)

Figure 21. Comparison of scalar profiles at the outlet (Cr=0.8).
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Figure 22. Godunov-type upwind scheme (left) and explanation using the concept of virtual particle movement (right).

as in Section 2.4. The CIVA–particle method is superior to the CIP method, because the
CIVA–particle method takes the above points into consideration. Therefore, the CNP method
is also applicable to position evaluation (virtual particle movement) in the Godunov method
(see Figure 23). The evaluation in Equation (14%) used in the CIP method can be considered to
be an explicit scheme. On the other hand, the following evaluation is considered to be an
implicit scheme (Figure 23),

f(xi, t+Dt): f(xi−Dtu i
n+1, t). (23)

The scheme used in the GSMAC–CIP method proposed by Kaneyama and Tanahashi [15] is
based on this implicit scheme. However, these two methods have first-order accuracy in time
and induce errors in position evaluation in the same manner as in the case of the particle
method (Figure 23). The author, therefore, applies the Crank–Nicolson-type evaluation
scheme (CNP),

f(xi, t+Dt): f
�

xi−Dt
u i

n+u i
n+1

2
, t
�

, (24)

to the original CIP method in order to improve the time integral accuracy.
The validity is checked using the same IAHR benchmark problem as in Section 3.2. At first,

the results for the UTOPIA and CIP methods are compared in Figure 24 in the case of
Cr=0.6 (Cr is the Courant number). From the results for the CIP method, it can be confirmed
that for the CIP method the result in the case of a steep slope is equivalent to that of the
benchmark solution, but there is a marked difference in the position of the steep slope. On the
other hand, with UTOPIA, it is confirmed that the overshoot is large and the slope is gentler
than that obtained by the CIP method, but there is less difference in the slope position than
for the CIP method. Next, the performance of the CIP method was analyzed by changing time
step size. The result is shown in Figure 25. It is found that to achieve the same accuracy as the

Figure 23. Comparison of upwind schemes in the rotational field.
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Figure 24. Comparison of CIP with UTOPIA.

benchmark solution, it is necessary to reduce the Courant number to about 0.2 or 0.02 when
using the CIP method. It is thought that this error in position originates in the low accuracy
of the explicit evaluation of position (Equation (14%)). Therefore, the distribution of the
solution shifts in the direction of the rotation center as predicted from Figure 23. In order to
improve accuracy of position evaluation, the CNP method was integrated into the CIP
method. The result of Cr=0.6 is shown in Figure 26, which includes the results obtained by
the implicit evaluation for comparison. In the implicit method, the solution shifts away from
the rotation center as predicted. From the results, it can be confirmed that the implicit CIP
method proposed by Makuuchi et al. [16] causes the same problems in multi-dimensional
non-uniform flow because the implicit scheme may use a larger time step size than the explicit
scheme. On the other hand, despite the large Courant number, the result for the CNP method

Figure 25. Effect of variation of the time step on the results with CIP.
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Figure 26. Comparison of the results obtained using three different evaluation methods for particle movement
(Cr=0.6).

is found to have the same accuracy as that for Cr=0.02 in the case of the explicit method, and
the accuracy with respect to time is thus improved.

4. CONCLUSION

A simple, efficient, flexible and accurate interpolation method, CIVA, was introduced for
mesh-free algorithms for flow simulations. The CIVA method utilizes the concept of the CIP
method and enables mesh-free cubic interpolation in a tetrahedron for three dimensions and in
a triangle for two dimensions. By using the local or natural co-ordinate system, such as volume
and area co-ordinates, the CIVA method solves the problems that are generally caused by the
mesh-free cubic interpolation in those forms. New accurate mesh-free methods, such as the
CIVA–gridless method and the CIVA–particle method were developed from the CIVA
method. In particular, the CIVA–particle method, which consists of Lagrangian, rearrange-
ment and interpolation steps, is flexible in the treatment of moving calculation points. Thus,
the method enables integration of the gridless method, the particle method and the CIP
method. Using a pure convection problem as a benchmark, the CIVA-based mesh-free method
was found to be stable and to cause little numerical viscosity.

As it is important for the CIVA-based mesh-free method to correctly evaluate particle
movement in order to achieve high accuracy, the evaluating algorithm was also improved by
using a higher-order time marching scheme. The validity was confirmed using a convection–
diffusion problem. The algorithm for evaluating particle movement was also made applicable
to mesh-based conventional upwind schemes, including the CIP method, by interpreting the
upwind scheme as virtual particle movement with the flow. From the computed results, the
evaluating algorithm was confirmed to be effective for the conventional mesh-based method
and to improve computational accuracy.

Since the CIVA-based mesh-free method has the advantage of the rearranged particle
position being independent of the original position and the flow direction, it is applicable with
sufficient accuracy to various types of methods. For example, Yoon et al. have applied this
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LRI concept to the moving particle semi-implicit (MPS) method and succeeded in solving
free-surface flow problems with inlet and outlet boundaries [17]. It is inherently impossible for
the MPS method to solve problems with inlet and outlet boundaries because the particle
number density cannot be kept constant. To solve the problem, the author’s concept of the
LRI algorithm was applied to the MPS method. This is a good example of the application of
this method. Of course, the CIVA method is also useful for conventional mesh-based methods.
It is thought that it will be effective to apply it to methods based on an unstructured mesh
system in order to improve the computation accuracy. Consequently, the CIVA-based mesh-
free methods will make it possible to perform highly accurate simulation for wide range of
problems, including complicated geometries and complicated phenomena with various kinds of
methods, because they enable flexible, efficient and accurate fluid simulations. In the future, it
is intended to develop a mesh-free method that is applicable to more complex problems, such
as the fluid–structure interaction, turbulent flow and multi-phase flow.

APPENDIX A. TRUNCATION ERROR OF THE CIP METHOD

The truncation error of the CIP method is examined here using the Taylor expansion. In the
case of one-dimensional uniform flow, the algorithm to solve the convection problem with the
CIP method can be expressed as

f j
n+1= (c−1)2(2c+1)f j

n+c2(3−2c)f j−1
n −Dxc(c−1)2f %j n+Dxc2(1−c)2f %j−1

n , (A.1)

f %j n+1=
6

Dx
c(1−c)fi−

6
Dx

c(1−c)fj−1+ (1−c)(1−3c)f %j+c(3c−2)f %j−1, (A.2)

where c=uDt/Dx, u is the uniform velocity, Dt is the time increment and Dx is the mesh
interval.

Then, the relations

f j−1
n = f j

n−Dxf %j n+
Dx2

2
(2f
(x2

)
j

n

−
Dx3

6
(3f
(x3

)
j

n

+
Dx4

24
(4f
(x4

)
j

n

−O1(Dx5),

f %j−1
n = f %j n−Dx

(2f
(x2

)
j

n

+
Dx2

2
(3f
(x3

)
j

n

−
Dx3

6
(4f
(x4

)
j

n

+O2(Dx4), (A3)

f j
n+1= f j

n+Dt
(f
(t

)
j

n

+
Dt2

2
(2f
(t3

)
j

n

+
Dt3

6
(3f
(t4

)
j

n

+
Dt4

24
(2f
(t4

)
j

n

+O(Dt5),

and

(2f
(2t

= −u
(2f
(t (x

=u2 (
2f
(x2,

(3f
(3t

= −u3 (
3f
(x3,

(4f
(4t

=u4 (
4f
(x4 (A.4)

can be established. By substituting the relations into Equation (A.1), we get

(f
(t

)
j

n

= −u
(f
(x

)
j

n

−u
c(1−c)2

24
·Dx3 (

4f
(x4

)
j

n

+O(Dx4, Dt4). (A.5)

Therefore, the CIP method is found to be a scheme that is third-order both in space and in
time. Note that the derivative can be expressed as

(f %
(t

)
j

n

= −u
(f %
(x

)
j

n

+u
(1−c)(1−2c)

12
·Dx2 (

3f
(x3

)
j

n

+O(Dx3, Dt3). (A.6)
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However, the above discussion holds only for the case of one-dimensional uniform flow. In the
case of two-dimensional non-uniform flow, the accuracy of the time integral deteriorates as
described in Section 3.
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